PUMMERER REARRANGEMENTS AND SIMILAR REACTIONS OF SOME SIX-MEMBERED CYCLIC SULPHOXIDES: SYNTHESIS OF 3-DEOXY-5-THIOPENTOPYRANOSES BRANCHED AT C-3

F. SANTOYO GONZALEZ*, P. GARCIA MENDOZA,

Department of Organic Chemistry, University of Granada, Granada (Spain)

AND F. J. LOPEZ APARICIO

Academy Sciences of Granada, Granada (Spain)

(Received March 31st, 1988; accepted for publication, May 26th, 1988)

ABSTRACT

Oxidation with 3-chloroperoxybenzoic acid of *meso-3*,5-diacetoxytetrahydrothiopyran derivatives 4,4-disubstituted variously with CO₂Et, CN, Boc, and CONH₂ and 4-substituted with NO₂ gave mixtures of the corresponding sulphoxides **2a-e** and **3a-e**. These sulphoxides were converted by Pummerer rearrangement into 1,2,4-tri-*O*-acetyl-3-deoxy-5-thio-DL-pentopyranoses (**4a-i**) branched at C-3. Treatment of the sulphoxides with thionyl chloride gave 2,4-di-*O*-acetyl-3-deoxy-5-thio-DL-pentopyranosyl chlorides (**4j-n**) branched at C-3.

INTRODUCTION

The synthesis of 5-thiopentopyranoses has been achieved by thiocarboxylate displacements on 5-sulphonates of the corresponding sugars¹⁻³. We have devised a three-stage scheme for the synthesis of 1,2,4-tri-*O*-acctyl-3-deoxy-5-thio-DL-pentopyranoses (**4a-i**) branched at C-3, and 2,4-di-*O*-acetyl-3-deoxy-5-thio-DL-pentopyranosyl chlorides (**4j-n**) branched at C-3, from non-sugar starting materials.

First, the cyclic sulphides 1a-e were prepared by reaction of thiodiglycolaldehyde with active methylene compounds (ethyl cyanoacetate⁴, *tert*-butyl cyanoacetate⁵, malononitrile⁶, cyanoacetamide⁷, and nitromethane⁸). Secondly, the tetrahydrothiopyrans 1a-e were oxidised to the sulphoxide level 2a-e and 3a-e. Thirdly, the sulphoxides were converted by the Pummerer rearrangement into the α -acetoxysulphides 4a-i, or by treatment with thionyl chloride into the α -chlorosulphides 4j-n.

^{*}Author for correspondence.

RESULTS AND DISCUSSION

Oxidation of **1a–e** with 3-chloroperoxybenzoic acid⁹, using a 1:1 molar ratio, gave mixtures of the corresponding sulphoxides **2a–e** and **3a–e** in high yields (82.0–95.5%). The mixtures of **2a,b,e** and **3a,b,e** were fractionated by column chromatography, but the components of the mixtures of **2c,d** and **3c,d** could not be resolved. Oxidation of cyclic sulphides by peroxy acids is subject to steric approach control^{10–12}. Oxidation of the sulphides **1a–d** with 3-chloroperoxybenzoic acid yielded mainly the products (**3a–d**) of axial oxygenation whereas the sulphide **1e** yielded mainly the product (**2e**) of equatorial oxygenation. The preference for oxygen to be axial in six-membered cyclic sulphoxides is known^{13–16}.

The structures of 2a-e and 3a-e were established on the basis of elemental analyses and spectroscopic data. Thus, 2a-e show characteristic i.r. bands^{17,18} for sulphoxides, ester, amide, and nitro groups. The significant deshielding 19-22 of protons that are syn-axial to an axial sulphoxide group can be used to assign configuration at the S \rightarrow O centre in 2a-e and 3a-e. For 2a-e, the chemical shifts of the resonances of H-3,5 are essentially the same as those of the starting materials 1a-e, whereas the corresponding signals for **3a-e** appear downfield ($\Delta \delta 0.77 \pm 0.04$ p.p.m.) of those of **1a-e** (see Table I). In support^{20,23} of this configurational assignment is the fact that the geminal coupling-constants (11.7-12.8 Hz) for the equatorial sulphoxides 2a-e are smaller than those (13.2-14.1 Hz) for the respective axial sulphoxides 3a-e (see Table II). The chemical shift difference for the resonances of the protons of the methylene groups that are vicinal to the sulphoxide centre is larger (0.87 p.p.m.) when the sulphoxide oxygen is axial than when it is equatorial²⁴ (0.48 p.p.m.). The difference in chemical shift of the resonances of the protons at C-2,6 in 2a-e and 3a-e are similar, which may be attributed to the 3,5-acetoxy groups²⁵. Long-range $(J_{2e,6e})$ coupling^{20,26,27} (accurate data could not be obtained) were observed for 2a-e and 3a-e. The ¹³C-n.m.r. data accorded with the assigned structures. Introduction of an equatorial oxygen (isomers 2a-e) induced a larger downfield shift (23.0 \pm 1.4 p.p.m.) in the signals for C-2,6 than when the oxygen was axial (16.7 ± 0.8 p.p.m.) (isomers **3a-e**), as has been reported^{25,28,29}. The resonances of C-3.5 in 2a-e and 3a-e showed about the same chemical shift with a

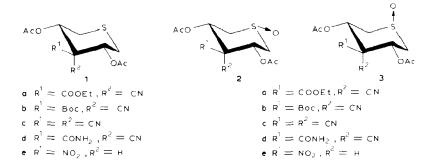


TABLE I

1H-N.M.R. CHEMICAL SHIFT DATA FOR 1a-e, 2a-e, AND 3a-e

Compound	H-3,5	H-2e, 6e	H-2a,6a	Others
18"	5.36dd	2.80 m	Jm.	4.30 (q, 2 H, J7.3 Hz, CH,CH,O), 2.08 (s, 6 H, 2 Ac), and 1.30 (t. 3 H, J7.3 Hz, CH,CH,O)
$2a^a$	5.26dd	3.74m	$3.10 ps-t^c$	4.25 (q, 2 H, J7.2 Hz, CH, CH, CH, O), 2.11 (s, 6 H, 2 Ac), and 1.27 (t, 3 H, J7.2 Hz, CH, CH, C)
$3a^a$	6.06dd	3.53m	2.75dd	4.27 (q, 2 H, 17.1 Hz, CH, CH, CH, O), 2.09 (s, 6 H, 2 Ac), and 1.28 (t, 3 H, 17.1 Hz, CH, CH, O)
$1\mathbf{b}^a$	5.32dd	2.80 m	ш(2.10 (s, 6 H, 2 Ac) and 1.47 (s, 9 H, Me ₂ C)
$2\mathbf{b}^a$	5.24dd	3.73m	3.10ps-t	2.12 (s, 6 H, 2 Ac) and 1.45 (s, 9 H, Me ₃ C)
$3\mathbf{b}^a$	6.05dd	3.50m	2.74dd	2.10 (s, 6 H, 2 Ac) and 1.46 (s, 9 H, Me ₃ C)
16"	5.35dd	2.85 m	m	2.20 (s, 6 H, 2 Ac)
2ca	5.33dd	3.80m	3.08ps-t	(- V C 11) - C) CC C F 3CC
300	6.12dd	3.57m	2.70dd	2.20 and 2.23 (2.8, 0 H, 2 Ac)
1d°	5.30dd	2.8	2.85 m	6.30, 5.75 (2 bs, 2 H, CONH,), and 2.10 (s, 6 H, 2 Ac)
$2\mathbf{d}^b$	5.50dd	3.92m	2.71ps-t	(= v C 11) =) 30 CF = 0 (11 NOO 11 C ==) 0 L
$3\mathbf{d}^b$	5.82dd	3.46m	2.86ps-t	$(, L_1, CO_1 H_2)$ and $(, L_2, L_3)$ (c) of $(, L_3, L_3)$
1e"	5.35dı	2.94ddd	2.54dd	4.54 (t, 1 H, J 10.8 Hz, H-4) and 2.02 (s, 6 H, 2 Ac)
2e ^a	5.37ddd	3.82m	2.83t	4.92 (t, 1 H, J10.5 Hz, H-4) and 2.08 (s, 6 H, 2 Ac)
3e ^a	3.06dt	3.68m	2.54dd	4.95 (t. 1 H. J 10.7 Hz, H-4) and 2.06 (s, 6 H, 2 Ac)

^aFor a solution in CDCI₃ (internal Me₄Si). ^bFor a solution in (CD₃)₂SO. ^cPseudo triplet.

TABLE II			
$^3J_{\mathrm{H,H}}$ values $(\mathrm{Hz})^d$	FOR 2 a-e	AND	3а-е

Compound	$\mathbf{J}_{2\mathbf{a},\beta}$	J _{2e,3}	$J_{2a,2e}$	
1a	8.8	6.3		
2a	12.6	2.8	12.4	
3a	11.2	3.3	14.1	
1b	9.0	6.0		
2b	12.6	3.1	12.5	
3b	12.0	3.3	13.8	
1e	8.0	6.7		
2c	12.5	2.7	12.8	
3e	11.6	3.0	13.8	
1d	9.3	5.6		
2d	12.2	2.8	11.7	
3d	12.0	3.0	14.1	
1e	10.8	4.4	12.7	
2e	12.1	3.8	12.1	
3e	12.2	3.9	13.2	

aFirst order.

shielding effect of \sim 7.0 p.pm. when compared with **1a–e** (see Table III), so that there is no marked shielding of C-3,5 in isomers **3a–e** which would be subject to a γ -axial effect from an axial sulphoxide function^{25,28,29}.

The Pummerer reaction of sulphoxides, which provides a useful method for the synthesis of α -substituted and/or α,β -unsaturated sulphides, has been applied widely in the synthesis of organosulphur compounds^{30–40} and of 4-thiofuranoses^{12,41}. The Pummerer rearrangement was investigated under different conditions: A, in boiling dichloromethane containing acetic anhydride and toluene-p-sulphonic acid^{10,34–39}; B, at \sim 55° in acetic anhydride containing toluene-p-sulphonic acid; and C, in boiling acetic anhydride containing sodium acetate⁴⁰. The best yields (63–93%) were obtained under conditions A, and the mixtures of isomers 2a-e and 3a-e were used directly for the Pummerer reaction (see Experimental). Under conditions A and C, the reactions were stereospecific and β isomers (4a,c,d,f,i) were obtained; however, under conditions C, a dark-coloured product was formed quickly and the Pummerer product (4c,f,i) could not be isolated. Nevertheless, the isolation of 4a,d shows that, under these conditions, the reaction was stereospecific. When 2a + 3a, 2c + 3c, and 2d + 3d were treated under conditions B, two products (4a,b, 4d,e,and 4g,h, respectively) were formed in each reaction. The α anomers 4b,e,g were obtained by anomerisation^{20,42} of the β anomers **4a,d,f** with perchloric acid in acetic acid-acetic anhydride (1:2) at room temperature. These results suggest that the anomeric effect is appreciable in these compounds.

When the mixtures of the sulphoxides **2a,e** and **3a,e** were treated^{43,44} with thionyl chloride in a heated solution of dichloromethane, **4j-n** were formed in good yields (70–94%). As in the above-mentioned Pummerer reaction, the reactions were stereospecific, yielding only the β anomers **4j-n**.

TABLE III

¹³C-N.M.R. CHEMICAL SHIFT DATA FOR 1a-e, 2a-e, AND 3a-e

⁴For a solution in CDCl₃, ^bFor a solution in (CD₃)₂SO, ^cNot observed,

The structures of 4a-n were established* on the basis of elemental analyses and spectroscopic data (see Tables IV-VI). The configuration at C-1 in 4a-n and the 4C_1 conformation were deduced from the $J_{1,2}$ and $J_{4,5}$ values in the 1H -n.m.r. spectra. Compounds 4a,c,d,f,i-k showed $J_{1,2}$ values of 8.8-10.0 Hz, indicating H-1,2 to be trans-diaxial in a 4C_1 conformation. The same can be said for the configuration at C-4 in 4a-n, based on the $J_{4.5a}$ values of 9.0-11.3 Hz. On the other hand, 4b,e,g,h had $J_{1,2}$ values of 2.9-3.2 Hz, in accordance with the e,a disposition of H-1,2. Table VI includes the 13 C-n.m.r. data for 4a-n. Each of the thio derivatives was characterised by upfield shifts of the signals for C-1,5 45 -47. For the β anomers, 4a,d,f, C-1,3.5 resonate upfield of the corresponding carbon atoms in the α anomers 4b,e,g (see Table VI), whereas the chemical shifts of the resonances C-2,4 were essentially the same. Substitution of a chlorine substituent for an acetoxyl group affects the resonances of H-1 and C-1. Thus, H-1 and C-1 of 4j-n resonate \sim 1.1 and \sim 15 p.p.m., respectively, to higher field than H-1 and C-1 of the acctoxy analogues 4a,c,d,f,i.

The i.r. band at $\sim 2250 \text{ cm}^{-1}$ for the cyano group⁴⁸ was not observed for **2a–e**, **3a–c**, and **4a–d,j–k**, and was weak for **2d, 3d, 4f**, and **4m** as found^{5,7,49} for cyano groups near to oxygenated functions.

The stereospecificity of the Pummerer rearrangement and the reaction with thionyl chloride suggest that the processes must be intermolecular, since the same products are obtained independently of the sulphoxide isomers used. This inference is not in agreement with the result reported for compounds containing five-membered rings, but accords with the results reported for acyclic sulphoxides. It is unlikely that the reactions were intramolecular followed by anomerisation because the same anomers were obtained in the presence of acid (conditions A) or base (conditions C), and these products were also the less thermodynamically stable. As mentioned above, the anomerisation was in the opposite direction when the β anomers were treated with perchloric acid in acctic acid—acetic anhydride.

^{*}Only D forms are depicted in the formulae.

TABLE IV

H-N.M.R. CHEMICAL SHIFT DATA FOR 4a-na	HEMICAL	SHIFT DA	ATA FOR 4	la-n _e	and the second	
Compound H-1	H-1	H-2	H-4	H-4 H-5e H-5a Others	H-5a	Отегѕ
4a ^b	6.03d	5.63d	5.46dd	2.94dd	3.15dd	5.63d 5.46dd 2.94dd 3.15dd 4.25 (q, 2 H, J7.1 Hz, CH ₃ CH ₂ O), 2.05, 2.03 (2 s, 9 H, 3 Ac), and 1.27 (t, 3 H, J7.1 Hz, CH ₃ CH ₂ O)
49 ["]	9.06d	5.47d	5.38dd	2.76dd	3.20dd	4.23 (q, 2 H, J 7.1 Hz, CH ₃ CH ₂ O), 2.15, 2.05, and 1.98 (3 s, 9 H, 3 Ac), and 1.23 (t, 3 H, J 7.1 Hz, CH ₃ CH ₂ O)
4c ⁶	9.00d	5.63d	5.40dd	5.40dd 2.90dd 3.12dd	3.12dd	2.05, 2.03 (2 s, 9 H, 3 Ac), and 1.42 (s, 9 H, Me,C)
4 d c	9.00d	5.65d	5.45dd		3.00m→	\leftarrow 3.25-3.00m \rightarrow 2.25 and 2.15 (2 s, 9 H, 3 Ac)
$4e^b$	6.12d	5.44d	5.40dd	2.86dd	2.86dd 3.20dd	2.23, 2.20, and 2.16 (3 s, 9 H, 3 Ac)
45 %	9.00d	5.70d	5.40dd		2.80dd 3.10dd	6.46, 6.25 (2 bs, 2 H, CONH ₂), 2.10, 2.08, and 2.05 (3 s, 9 H, 3 Ac)
4 a	6.15d	5.50d	5.38dd		2.86dd 3.17dd	6.53, 6.10 (2 bs, 2 H, CONH ₂), 2.20, 2.09, and 2.03 (3 s, 9 H, 3 Ac)
4	6.16d	5.50d	5.40dd		2.90dd 3.20dd	8.62 (bs, 1 H, NH), 2.44 (s, 3 H, MeCONH), 2.20, 2.10, and 2.04 (3 s, 9 H, 3 Ac)
4i ⁶	5.84d	5.73t	5.48dt	3,08dd	2.73dd	3.08dd 2.73dd 4.67 (t. 1 H. J 8.8 Hz. H-3), 2.05, 2.03, and 2.01 (3 s., 9 H, 3 Ac)
4.	4.89d	5.57d	5.40dd	←3.3~2	2.75m→	$\leftarrow 3.3 - 2.75 \text{m} \rightarrow 4.28 (t_1.2 \text{H}, J7.1 \text{Hz}, \text{CH}, \text{CH}, \text{C}), 2.10 (s, 6 \text{H}, 2 \text{Ac}), \text{ and } 1.27 (t, 3 \text{H}, J7.1 \text{Hz}, \text{CH}, \text{CH}, \text{O})$
4 κ ⁶	4.90d	5.54d	5.40dd	2,80dd	3.07dd	2.80dd 3.07dd 2.10, 2.03 (2 s, 6 H, 2 Ac), and 1.40 (s, 9 H, Me, C)
4	4.90d	5.64d	5.43dd		3.08dd	2.95dd 3.08dd 2.28 and 2.22 (2s, 6 H, 2 Ac)
$4m^b$	4.82d	5.50d	5.33dd		2.88dd 2.94dd	6.72, 6.43 (2 bs, 2 H, CONH ₂), 2.03 and 1.98 (2 s, 6 H, 2 Ac)
$4n^b$	4.75d	5.64dt	5.50dt	3.06dd	2.73dd	5.50dt 3.06dd 2.73dd 4.63 (sex, I H, $J_{2,3} + J_{3,4}$ 20.8 Hz, H-3), 2.09 and 2.03 (2.8, 6 H, 2 Ac)

 $^{\rm a} For~a~solution~in~CDCl_3$ (internal Me_4Si). $^{\rm b} 300~MHz.~^{\rm c} 80~MHz.$

TABLE V			
$^3J_{ m H,H}$ values	(Hz)a	FOR	4a-n

Compound	$\mathbf{J}_{I,2}$	J _{4,5e}	$J_{J,5a}$	J _{5a,5e}	
4a	9.5	4.0	10.8	14.0	
4b	3.1	3.8	11.3	13.5	
4c	9.5	4,0	10.9	13.8	
4d	9.0	6,0	9.0		
4e	3.2	3.7	11.1	13.9	
4f	9.6	4.9	10.0	13.6	
4g	2.9	3.8	11.3	13.5	
4h	3.0	3.9	11.3	13.6	
4i	8.8	4.5	10.2	13.8	
4j	9,9	4.8	10.3		
4k	9.9	4.0	11.0	13.8	
41	9.8	4.1	10.7	14.3	
4m	10.0	4.5	10.7	14.0	
4n	9,7	4.5	10.8	13.7	

aFirst order.

EXPERIMENTAL

Organic solutions were dried over anhydrous Na₂SO₄. Solvents were evaporated under reduced pressure at <40°. Column chromatography was carried out on silica gel (Merck, 70–230 mesh, ASTM). Melting points (uncorrected) were obtained with an Electrothermal apparatus. I.r. spectra were recorded with a Perkin–Elmer 983G spectrophotometer, using KBr discs for solids. N.m.r. spectra were obtained with Bruker WP-80-SY and AM-300 spectrometers.

Oxidation of 1a-e with 3-chloroperoxybenzoic acid. — A solution of 1a-e in dichloromethane (30 mL) at $\sim -10^\circ$ was treated dropwise with a solution of 3-chloroperoxybenzoic acid (85%) in dichloromethane (30 mL). After 30 min at 0° and 15 min at room temperature, the solution was shaken with aqueous NaHCO₃, dried, and concentrated.

The following amounts and conditions were used.

Starting materials (g)	Peroxy acid (g)	Products (g, %)	
1a (1.00) ⁴	0.65	2a (0.32, 30.4)	
		3a (0.64, 60,8)	
1b (0.93) ⁵	0.55	2b (0.35, 36.0)	
		3b (0.51, 54.8)	
1c (0.83)6	0.63	2c + 3c (0.84, 95.5)	
		$(2c: 3c \text{ ratio } \sim 1:4)^{a}$	
1d (0.7) ⁷	0.49	$\mathbf{2d} + \mathbf{3d} (0.65, 88.0)$	
		$(2d:3d \text{ ratio } \sim 1:3.5)^n$	
1e (0.69) ⁸	0.53	$\hat{\mathbf{2e}} + \mathbf{3e} (0.6, 82.0)$	
		$(2e:3e \text{ ratio } -4:1)^a$	

^aBased on the ¹H-n.m.r. data.

and H-4.

TABLE VI

¹³C-n.m.r. CHEMICAL SHIFT DATA FOR **4a-n**^a

Сотрог	Compound C-1b	C-2 _p	C-4p	<i>C-3</i>	C.S	Others
43	70.4	72.3	72.0	58.0	28.3	168.9, 168.4 (3 COO), 163.4 (4 COOEt), 113.4 (CN), 64.2 (CH ₃ CH ₂ O), 20.5, 20.2 (3 MeCOO),
4	6.79	73.0	72.4	54.3	24.2	and 13.9 (CH ₃ CH ₂ CH ₂ O) 169.2, 168.8, 168.5 (3 COO), 164.4 (COOEt), 113.9 (CN), 64.1 (CH ₃ CH ₂ O), 20.48, 20.16 (3 MeCOO),
4 c	70.6	72.4	72.2	59.2	28.5	and 13.90 (CH ₃ CH ₂ O) 168.8, 168.4, 168.2 (3 COO), 161.8 (COOBu ³), 113.6 (CN), 86.1 (CMe ₃), 27.4 (CMe ₄), 20.5
1	69 7	7	71.2	45.5	27.9	and 20.3 (3 MeCOO) 168.6 168.2 168 0 (3 COO) 113.1, 109.9 (2 CN) 20.0, 20.5, and 20.2 (3 MeCOO)
4	67.6	72.5	72.1	42.5	24.1	168.8, 168.7, 168.5 (3 COO), 112.1, 110.5 (2 CN), 20.5, 20.4, and 20.2 (3 MeCOO)
4f	70.9	73.0	72.4	57.5	27.9	168.7, 167.9 (3 COO), 163.9 (CONH ₃), 115.6 (CN), 20.7, 20.6, and 20.3 (3 MeCOO)
4 %	68.3	73.2	72.6	53.9	24.3	169.1, 168.7, 168.4 (3 COO), 164.9 (CONH ₂), 116.5 (CN), 20.7 and 20.3 (3 MeCOO)
. €	68.1	73.2	72.7	55.1	24.3	170.9 (MeCONH), 169.0, 168.6, 168.3 (3 COO), 162.8 (CONHAC), 115.3 (CN), 25.3 (MeCONH),
						20.6, 20.5, and 20.3 (3 MeCOO)
. 4	71.1	72.0	71.6	88.8	28.0	169.1, 168.7, 168.4 (3 COO), 20.6, 20.5, and 20.3 (3 CH ₃ COO)
.	55.4	74.5	72.2	58.9	30.2	168.7, 168.3 (2 COO), 163.1 (COOEt), 113.3 (CN), 64.3 (CH ₃ CH ₂ O), 20.5, 20.2 (2 CH ₃ COO),
•						and 13.9 (CH ₂ CH ₂ O)
4	55.5	74.3	72.2	59.9	30.3	168.6, 168.1 (2 COO), 161.5 (COOBur), 113.5 (CN), 86.3 (CMe ₃), 27.5 (Me ₄ C), 20.4
						and 20.2 (2 MeCOO)
4	54.4	73.6	7.1.7	46.5	30.1	168.6, 168.0 (2 COO), 110.9, 109.9 (2 CN), 20.5, and 20.2 (2 MeCOO)
4m	55.7	74.1	72.0	58.0	30.0	168.4, 167.6 (2 COO), 163.2 (CONH ₃), 115.0 (CN), 20.2, and 19.9 (2 MeCOO)
4n	56.5	74.7	71.5	89.7	30.7	169.0, 168.5 (2 COO), 20.6, 20.4 (2 MeCOO)
"For a se	olution in	CDCl ₃ . ²	'Assignn	nents for	C-1, C	^a For a solution in CDCl ₃ . ^b Assignments for C-1, C-2, and C-4 were made by 2D- ¹³ C- ¹ H shift-correlation spectroscopy, using the assignments for H-1, H-2,
* * * *						

t-3, t-5-Diacetoxy-4-cyano-r-4-ethoxycarbonyltetrahydrothiopyran t-1- (2a) and c-1-oxide (3a). — Column chromatography (ether) of the crude product gave, first, 2a, m.p. 153–154° (from ethanol); $\nu_{\rm max}^{\rm KBr}$ 1763, 1735, 1293, 1266, 1204, 1044, 975, 925, and 898 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 47.04; H, 5.00; N, 4.08. C₁₃H₁₇NO₇S calc.: C, 47.12; H, 5.17; N. 4.22%).

Eluted second was **3a**, m.p. 149–150° (from ethanol); $\nu_{\text{max}}^{\text{KBr}}$ 1757, 1222, 1088, and 1040 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 47.30; H, 4.96; N, 4.10%).

t-3,t-5-Diacetoxy-r-4-tert-butoxycarbonyl-4-cyanotetrahydrothiopyran t-1-(**2b**) and c-1-oxide (**3b**). — Column chromatography (1:5 hexane–ether) of the crude product gave, first, **2b**, m.p. 146–147°; $\nu_{\text{max}}^{\text{KBr}}$ 1761, 1730, 1299, 1213, 1159, 1042, and 927 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 50.19; H, 5.76; N, 3.81. C₁₅H₂₁NO₇S calc.: C, 50.12; H, 5.90; N, 3.89%).

Eluted second was **3b**, m.p. 164–165° (from chloroform–hexane); $\nu_{\text{max}}^{\text{KBr}}$ 1759, 1736, 1291, 1210, 1157, and 1042 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 50.20; H, 6.00; N, 3.78%).

r-3,c-5-Diacetoxy-4,4-dicyanotetrahydrothiopyran c-1- (**2c**) and t-1-oxide (**3c**). — Crystallisation of the crude product from ethanol gave a mixture of **2c** and **3c**, m.p. 214–215°; $\nu_{\text{max}}^{\text{KBr}}$ 1752, 1209, 1042, 923, and 895 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 46.45; H, 3.85; N, 9.77. $C_{11}H_{12}N_2O_5S$ calc.: C, 46.47; H, 4.25; N, 9.85%).

t-3,t-5-Diacetoxy-r-4-carbamoyl-4-cyanotetrahydrothiopyran t-I- (**2d**) and c-I-oxide (**3d**). — The product was separated from 3-chlorobenzoic acid by extraction of the concentrated reaction mixture with ether (2 × 25 mL), giving **2d** + **3d**, m.p. >280°; $\nu_{\rm max}^{\rm KBr}$ 3391, 3167, 2266, 1755, 1712, 1632, 1372, 1212, 1075, 1040, 925, and 920 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 43.90; H, 4.54; N, 9.52. C₁₁H₁₄N₂O₆S calc.: C, 43.68; H, 4.66; N, 9.30%).

t-3,t-5-Diacetoxy-r-4-nitrotetrahydrothiopyran t-1 (2e) and c-1-oxide (3e). — The product was separated from 3-chlorobenzoic acid by extraction of the concentrated reaction mixture with ether (2 × 25 mL), giving 2e + 3e. Column chromatography (5:1 ether–acetone) of the mixture 2e + 3e (0.1 g) gave, first, 2e, m.p. 190° (from 1:3 acetone–ether); $\nu_{\text{max}}^{\text{KBr}}$ 1752, 1563, 1428, 1380, 1234, 1211, and 1036 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables I–III (Found: C, 39.00; H, 4.52; N, 4.85. C₉H₁₃NO₇S calc.: C, 38.71; H, 4.69; N, 5.01%).

Eluted second was **3e**, m.p. 210–212° (from ether); $\nu_{\text{max}}^{\text{KBr}}$ 1743, 1556, 1430, 1370, 1218, and 1019 cm⁻¹ (Found: C, 38.54; H, 4.80; N, 4.68%).

Pummerer rearrangement. — The sulphoxide was treated with acetic anhydride under conditions A–C: A, the mixture of the sulphoxide (1.21 mmol) in dichloromethane (20 mL) containing acetic anhydride (20 mmol) and toluene-p-sulphonic acid (0.3 g) was boiled under reflux under nitrogen; B, the sulphoxide (1.21 mmol) in acetic anhydride (40 mmol) containing toluene-p-sulphonic (0.25 g) was stirred at \sim 55° under nitrogen; C, the sulphoxide (1.21 mmol), acetic anhydride (8 mL), and sodium acetate (5 mmol) were boiled under reflux under nitrogen.

After the reaction, the mixture was diluted with water (25 mL) and extracted with dichloromethane (40 mL). The extract was washed with saturated aqueous NaHCO $_3$ (3 × 50 mL) and then with water (25 mL), dried, filtered, and concentrated.

The following amounts an	d conditions were	used:
--------------------------	-------------------	-------

Starting materials (g)	Conditions	Time (h)	Products (%)
2a + 3a	Α	7	4a (93.3)
	В	20	$4a + 4b (97.0)^a$
	C	6	4a (88.0)
2b + 3b	\boldsymbol{A}	10	4c (63.1)
2c + 3c	\boldsymbol{A}	7	4d (90.8)
	В	20	4d + 4e $(75.5)^b$
2d + 3d	A^c	10	4f (76.0)
	B^c	20	4g (57.3), 4h (20.2)
2e + 3e	A	5	4i (71.0)

^aIn the ratio 1.5:1. ^bIn the ratio 1:3. ^cAcetonitrile (10 mL) was added.

- 1,2,4-Tri-O-acetyl-3-C-cyano-3-deoxy-3-C-ethoxycarbonyl-5-thio-β-DL-xylopentopyranose (**4a**). Column chromatography (1:1 hexane–ethyl acetate) of the crude product (condition *A*) gave **4a**, m.p. 121–122° (from ethanol); $\nu_{\text{max}}^{\text{KBr}}$ 1761, 1281, 1199, 1068, 1024, 901, 758, and 635 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 48.51; H, 4.85; N, 3.66. C₁₅H₁₉NO₈S calc.: C, 48.25; H, 5.13; N, 3.75%).
- 1,2,4-Tri-O-acetyl-3-C-tert-butoxycarbonyl-3-C-cyano-3-deoxy-5-thio-β-DL-xylo-pentopyranose (**4c**). Column chromatography (3:1 ether–hexane) of the crude product (condition A) gave **4c**, m.p. 135–136° (from hexane); $\nu_{\text{max}}^{\text{KBr}}$ 1759, 1281, 1210, 1148, 1022, and 971 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 50.65; H, 5.94; N, 3.20. $C_{17}H_{23}NO_8S$ calc.: C, 50.86; H, 5.77; N, 3.49%).
- 1,2,4-Tri-O-acetyl-3,3-di-C-cyano-3-deoxy-5-thio-β-DL-erythro-pentopyranose (4d). Column chromatography (1:1 hexane–ether) of the crude product (condition A) gave 4d, m.p. 137–138° (from hexane): $\nu_{\rm max}^{\rm KBr}$ 1765, 1209, 1066, 1031, 930, and 901 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 47.50; H, 4.64; N, 8.35. C₁₃H₁₄N₂O₆S calc.: C, 47.84; H, 4.32; N, 8.58%).
- 1,2,4-Tri-O-acetyl-3-C-carbamoyl-3-C-cyano-3-deoxy-5-thio-β-DL-xylo-pento-pyranose (4f). Column chromatography (5:1 ether–hexane) of the crude product (condition A) gave 4f, m.p. 194–195° (from ether–hexane); $\nu_{\rm max}^{\rm KBr}$ 3354, 3211, 2219, 1760, 1710, 1625, and 1211 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 45.24; H, 4.83; N, 8.00. C₁₃H₁₆N₂O₇S calc.: C, 45.34; H, 4.68; N, 8.13%).
- 1,2,4-Tri-O-acetyl-3-C-carbamoyl-3-C-cyano-3-deoxy-5-thio- α -DL-xylo-pento-pyranose (4g), and 1,2,4-tri-O-acetyl-3-C-acetylcarbamoyl-3-C-cyano-3-deoxy-5-

thio-α-DL-xylo-*pentopyranose* (**4h**). — Column chromatography (3:1 ether-hexane) of the crude product (condition *B*) gave **4h**, m.p. 160–162° (from ether-hexane); $\nu_{\text{max}}^{\text{KBr}}$ 3341, 1775, 1750, 1730, 1449, 1381, 1236, 1217, 1194, and 1049 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 46.70; H, 4.85; N, 7.32. C₁₅H₁₈N₂O₈S calc.: C, 46.63; H, 4.70; N, 7.25%).

Eluted second was **4g**, m.p. 208–209° (from ether–hexane); $\nu_{\text{max}}^{\text{KBr}}$ 3430, 3190, 1760, 1744, 1700, 1617, 1482, 1222, 1024, 954, and 909 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 45.30; H, 4.45; N, 8.24. C₁₃H₁₆N₂O₇S calc.: C, 45.34; H, 4.68; N, 8.13%).

1,2,4-Tri-O-acetyl-3-deoxy-3-C-nitro-5-thio-β-DL-xylo-pentopyranose (**4i**). — Crystallisation of the crude product from ethanol gave **4i**, m.p. 149–150°; $\nu_{\rm max}^{\rm KBr}$ 1759, 1559, 1377, 1234, 1213, 1055, 1029, 982, and 901 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 41.30; H, 6.87; N, 4.24. C₁₁H₁₅NO₈S calc.: C, 41.11; H, 7.06; N, 4.36%).

Anomerisation of **4a,d,f** and synthesis of **4b,e,g**. — A solution of **4a,d,** or **f** (0.3 g) in acetic anhydride (2.0 mL) and acetic acid (1.0 mL) containing aqueous 60% perchloric acid (0.07 g) was left for 1 day at room temperature. Chloroform (50 mL) was added, and the mixture was washed with saturated aqueous NaHCO₃ (2 × 50 mL) and water (25 mL), then dried, filtered, and concentrated.

- 1,2,4-Tri-O-acetyl-3-C-cyano-3-deoxy-3-C-ethoxycarbonyl-5-thio-α-DL-xylopentopyranose (**4b**). Column chromatography (1:2 hexane–ether) of the crude product gave **4b** (0.24 g, 80.0%), m.p. 116–117° (from ethanol); $\nu_{\rm max}^{\rm KBr}$ 1744, 1371, 1212, 1106, 1080, 1041, and 949 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 48.20; H, 5.40; N, 3.47. C₁₅H₁₉NO₈S calc.: C, 48.25; H, 5.13; N, 3.75%).
- 1,2,4-Tri-O-acetyl-3,3-di-C-cyano-3-deoxy-5-thio-α-DL-erythro-pentopyranose (4e). Column chromatography (1:1 hexane–ether) of the crude product gave 4e (0.2 g, 66.6%), m.p. 135–136° (from ethanol); $\nu_{\rm max}^{\rm KBr}$ 1753, 1379, 1212, 1042, 956, and 900 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 47.70; H, 4.80; N, 8.70. C₁₃H₁₄N₂O₆ calc.: C, 47.84; H, 4.32; N, 8.58%).
- 1,2,4-Tri-O-acetyl-3-C-carbamoyl-3-C-cyano-3-deoxy-5-thio- α -DL-xylo-pento-pyranose (4g). Column chromatography (5:1 ether-hexane) of the crude product gave 4g (0.21 g, 70.0%).

Treatment of **2a-d** and **3a-d** with $SOCl_2$ and synthesis of **4j-n**. — The mixture of the sulphoxide in dichloromethane containing $SOCl_2$ was boiled under reflux under nitrogen. Dichloromethane (50 mL) was added, and the mixture was washed with saturated aqueous $NaHCO_3$ (2 × 100 mL) and water (25 mL), then dried, filtered, and concentrated.

2,4-Di-O-acetyl-3-C-cyano-3-deoxy-3-C-ethoxycarbonyl-5-thio-β-DL-xylopentopyranosyl chloride (**4j**). — Crystallisation of the crude product from hexane gave **4j**, m.p. 130–131°; $\nu_{\rm max}^{\rm KBr}$ 1768, 1745, 1370, 1206, 1021, 930, and 898 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 44.55; H, 4.74; N, 3.83. C₁₃H₁₆ClNO₆S calc.: C, 44.63; H, 4.61; N, 4.00%).

Starting materials (g)	CH ₂ Cl ₂ -SOCl ₂	Time (h)	Products (g, %)
$2\mathbf{a} + 3\mathbf{a} (0.66)$	20:4	6	4j (0.58, 83.2)
b + 3b (0.40)	15:3	7	4k (0.37, 88.0)
2c + 3c (0.40)	15:3	6	41 (0.30, 70.5)
2d + 3d(0.30)	$20:3^a$	15	4m (0.29, 91.1)
2e + 3e (0.27)	25:3	5	4n (0.27, 93.7)

The following amounts and conditions were used:

- 2,4-Di-O-acetyl-3-C-tert-butoxycarbonyl-3-C-cyano-3-deoxy-5-thio-β-DL-xylo-pentopyranosyl chloride (4k). Crystallisation of the crude product from hexane gave 4k, m.p. 114–115°; $\nu_{\rm max}^{\rm KBr}$ 1766, 1740, 1293, 1204, 1148, 931, and 899 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 47.50; H, 5.50; N, 3.87. C₁₅H₂₀ClNO₆S calc.: C, 47.68; H, 5.33; N, 3.70%).
- 2,4-Di-O-acetyl-3,3-di-C-cyano-3-deoxy-β-DL-erythro-pentopyranosyl chloride (41). Crystallisation of the crude product from hexane gave 41, m.p. 123–125°; $\nu_{\rm max}^{\rm KBr}$ 1763, 1205, 1035, 925, and 895 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 43.50; H, 3.14; N, 8.97. C₁₁H₁₀ClN₂O₄S calc.: C, 43.78; H, 3.34; N, 9.28%).
- 2,4-Di-O-acetyl-3-C-carbamoyl-3-C-cyano-3-deoxy-β-DL-xylo-pentopyranosyl chloride (4m). Column chromatography (ether) of the crude product gave 4m, m.p. 204° (from ether); $\nu_{\rm max}^{\rm KBr}$ 3416, 3157, 2256, 1766, 1713, 1630, 1369, 1205, 1040, 1021, and 970 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 41.25; H, 4.23; N, 8.90. C₁₁H₁₃ClN₂O₅S calc.: C, 41.18; H, 4.08; N, 8.73%).
- 2,4-Di-O-acetyl-3-deoxy-3-C-nitro-5-thio-β-DL-xylo-pentopyranosyl chloride (4n). Crystallisation of the crude product from hexane gave 4n, m.p. 145–147°; $\nu_{\rm max}^{\rm KBr}$ 1750, 1559, 1429, 1376, 1217, 1029, 977, and 898 cm⁻¹. For the ¹H- and ¹³C-n.m.r. data, see Tables IV–VI (Found: C, 36.12; H, 4.18; N, 4.57. C₉H₁₂ClNO₆S calc.: C, 36.30; H, 4.06; N, 4.70%).

ACKNOWLEDGMENT

This work was supported by the Comisión Asesora de Investigación Científica y Técnica, Grant No. PB85–0390.

REFERENCES

- 1 J. C. P. SCHWARTZ AND K. C. YULE, Proc. Chem. Soc., (1961) 417.
- 2 T. J. Adley and L. N. Owen, Proc. Chem. Soc., (1961) 418–419; J. Chem. Soc., C, (1966) 1287–1290.
- 3 N. A. Hughes and N. Munkombwe, Carbohydr. Res., 136 (1985) 397-409, 411-418.
- 4 F. J. LOPEZ APARICIO, F. ZORRILLA BENITEZ, AND F. SANTOYO GONZALEZ, An. Quim., Ser. C, 81 (1985) 178-180.

[&]quot;Acetonitrile (10 mL) was added.

- 5 F. J. LOPEZ APARICIO, F. SANTOYO GONZALEZ, P. GARCIA MENDOZA, F. HERNANDEZ MATEO. AND J. A. DOMINGUEZ MATINEZ, *Carbohydr. Res.*, 152 (1986) 99–111.
- 6 F. J. LOPEZ APARICIO, F. SANTOYO GONZALEZ, P. GARCIA MENDOZA, AND J. A. DOMINGUEZ MARTINEZ, An. Quim. Ser. C, 83 (1987) 148–154.
- 7 F. J. LOPEZ APARICIO, F. SANTOYO GONZALEZ, P. GARCIA MENDOZA, AND J. A. DOMINGUEZ MARTINEZ, Carbohydr. Res., 147 (1986) 237–245.
- 8 F. J. LOPEZ APARICIO, F. SANTOYO GONZALEZ, AND A. VARGAS BERENGUEL, unpublished data.
- 9 M. MADESCLAIRE, Tetrahedron, 42 (1986) 5464-5465.
- 10 S. GLUE, I. T. KAY. AND M. R. KIPPS, J. Chem. Soc., Chem. Commun., (1970) 1158.
- 11 J. J. RIGAU, C. C. BACON, AND C. R. JOHNSON, J. Org. Chem., 35 (1970) 3655-3657.
- 12 J. E. McCormick and R. S. McElhinney, J. Chem. Soc., Perkin Trans 1, (1976) 2533-2540.
- 13 C. R. JOHNSON AND D. MCCANTS, JR., J. Am. Chem. Soc., 86 (1964) 2935–2936.
- 14 J. C. MARTIN AND J. J. UEBEL, J. Am. Chem. Soc., 86 (1964) 2936-2937.
- 15 F. G. RIDDELL, Q. Rev. Chem. Soc., 21 (1967) 364-378.
- 16 N. L. ALLINGER AND J. KAO, Tetrahedron, 32 (1976) 529-536.
- 17 L. J. BELLAMY, C. P. CONDUIT, R. J. PACE. AND R. L. WILLIAMS, *Trans. Faraday Soc.*, 55 (1959) 1677–1683.
- 18 L. J. Bellamy, The Infrared Spectra of Complex Molecules, Methuen, London, 1954, pp. 152-175.
- 19 K. W. Buck, A. B. Foster, W. D. Pardoe, M. H. Qadir, and J. M. Webber, *Chem. Commun.*, (1966) 759-761.
- 20 A. B. Foster, T. D. Inch, M. H. Qadir, and J. M. Webber, Chem. Commun., (1968) 1086-1089.
- 21 R. R. Fraser, T. Durst, M. R. McClory, R. Viau, and Y. Y. Wigfield, Int. J. Sulfur Chem., 1 (1971) 133–142.
- 22 R. LETT, S. BORY, B. MOREAU, AND A. MARQUET, Bull. Soc. Chim. Fr., (1973) 2851.
- 23 Y. Allingham, R. C. Cookson, and T. A. Grant, Tetrahedron, 24 (1968) 1989–1995.
- 24 J. B. LAMBERT AND R. G. KESKE, J. Org. Chem., 31 (1966) 3429-3431.
- 25 E. Brunet and E. L. Eliel, J. Org. Chem., 51 (1986) 677-686.
- 26 S. STERNHELL, Rev. Pure Appl. Chem., 14 (1964) 15-46.
- 27 L. D. HALL, J. D. MANVILLE, AND A. TRACEY, Carbohydr. Res., 4 (1967) 514-515.
- 28 G. W. BUCHANAN AND T. DURST, Tetrahedron Lett., (1975) 1683–1686.
- 29 J. B. LAMBERT, D. A. NETZEL, H. SUN. AND K. K. LILIANSTROM, J. Am. Chem. Soc., 98 (1976) 3778–3783.
- 30 L. HORNER AND P. KAISER, Justus Liebigs Ann. Chem., 626 (1959) 19–25.
- 31 L. HORNER, Justus Liebigs Ann. Chem., 631 (1960) 198–199.
- 32 T. DURST, Adv. Org. Chem., 6 (1969) 285-388.
- 33 T. Durst, Comprehensive Organic Chemistry, Vol. 3, Part 11, Pergamon, New York, 1979, pp. 137–139.
- 34 K. IWAI, H. KOSUGUI, AND H. UDA, Chem. Lett., (1974) 1237-1240.
- 35 H. HAGIWARA, K. NAKAYAMA, AND H. UDA, Bull. Chem. Soc. Jpn., 48 (1975) 3769-3770.
- 36 H. J. MONTEIRO AND A. L. GAMAL, Synthesis, (1975) 437–438.
- 37 H. J. Monteiro, J. Org. Chem., 42 (9177) 2324-2326.
- 38 J. DURMAN, J. I. GREYSON, P. G. HUNT, AND S. WARREN, J. Chem. Soc., Perkin Trans. 1, (1986) 1939–1945.
- 39 C. R. JOHNSON AND G. PHILLIPS, J. Am. Chem. Soc., 91 (1969) 682-686.
- 40 S. Irivchijima, K. Maniwa, and G. Tsuchihashi, J. Am. Chem. Soc., 96 (1974) 4280-4283.
- 41 J. O. JONES AND R. S. MCELHINNEY, J. Chem. Res., (1982) (S) 116; (M) 1368; (1984) (S) 146–147; (M) 1501–1517.
- 42 E. G. PAINTER, J. Am. Chem. Soc., 75 (1953) 1137-1148.
- 43 G. A. Russell and L. A. Ochrymowycz, J. Org. Chem., 34 (1969) 3618–3624.
- 44 F. G. BORDWELL AND B. M. PITT, J. Am. Chem. Soc., 77 (1955) 572-577.
- 45 J. E. N. SHIN AND A. S. PERLIN, Carbohydr. Res., 76 (1979) 165–176.
- 46 V. S. RAO AND A. S. PERLIN, Carbohydr. Res., 92 (1981) 141-148.
- 47 W. KORYTNYK, S. VALENTEKOVIC-HORVATH, AND O. DODSON-SIMMONS, Carbohydr. Res., 108 (1982) 293–297.
- 48 A. D. Cross, Introduction to Practical Infrared Spectra, Butterworths, London, 1960, p. 50.
- 49 R. E. KITSON AND N. E. GRIFFITH, Anal. Chem., 24 (1952) 334-337.